Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 128
Filtrar
1.
Geohealth ; 8(4): e2023GH000888, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38638206

RESUMO

The Multi-Threat Medical Countermeasure (MTMC) technique is crucial for developing common biochemical signaling pathways, molecular mediators, and cellular processes. This study revealed that the Nod-like receptor 3 (NLRP3) inflammasome pathway may be a significant contributor to the cytotoxicity induced by various organophosphorus pesticides (OPPs). The study demonstrated that exposure to six different types of OPPs (paraoxon, dichlorvos, fenthion, dipterex, dibrom, and dimethoate) led to significant cytotoxicity in BV2 cells, which was accompanied by increased expression of NLRP3 inflammasome complexes (NLRP3, ASC, Caspase-1) and downstream inflammatory cytokines (IL-1ß, IL-18), in which the order of cytotoxicity was dichlorvos > dipterex > dibrom > paraoxon > fenthion > dimethoate, based on the IC50 values of 274, 410, 551, 585, 2,158, and 1,527,566 µM, respectively. The findings suggest that targeting the NLRP3 inflammasome pathway could be a potential approach for developing broad-spectrum antitoxic drugs to combat multi-OPPs-induced toxicity. Moreover, inhibition of NLRP3 efficiently protected the cells against cytotoxicity induced by these six OPPs, and the expression of NLRP3, ASC, Caspase-1, IL-1ß, and IL-18 decreased accordingly. The order of NLRP3 affinity for OPPs was dimethoate > paraoxon > dichlorvos > dibrom > (fenthion and dipterex) based on K D values of 89.8, 325, 1,460, and 2,690 µM, respectively. Furthermore, the common molecular mechanism of NLRP3-OPPs was clarified by the presence of toxicity effector groups (benzene ring, nitrogen/oxygen-containing functional group); =O, -O-, or =S (active) groups; and combination residues (Gly271, Asp272). This finding provided valuable insights into exploring the common mechanisms of multiple threats and developing effective therapeutic strategies to prevent OPPs poisoning.

2.
Cell Mol Life Sci ; 81(1): 165, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38578457

RESUMO

The DNA methylation is gradually acquired during oogenesis, a process sustained by successful follicle development. However, the functional roles of methyl-CpG-binding protein 2 (MeCP2), an epigenetic regulator displaying specifical binding with methylated DNA, remains unknown in oogenesis. In this study, we found MeCP2 protein was highly expressed in primordial and primary follicle, but was almost undetectable in secondary follicles. However, in aged ovary, MeCP2 protein is significantly increased in both oocyte and granulosa cells. Overexpression of MeCP2 in growing oocyte caused transcription dysregulation, DNA hypermethylation, and genome instability, ultimately leading to follicle growth arrest and apoptosis. MeCP2 is targeted by DCAF13, a substrate recognition adaptor of the Cullin 4-RING (CRL4) E3 ligase, and polyubiquitinated for degradation in both cells and oocytes. Dcaf13-null oocyte exhibited an accumulation of MeCP2 protein, and the partial rescue of follicle growth arrest induced by Dcaf13 deletion was observed following MeCP2 knockdown. The RNA-seq results revealed that large amounts of genes were regulated by the DCAF13-MeCP2 axis in growing oocytes. Our study demonstrated that CRL4DCAF13 E3 ubiquitin ligase targets MeCP2 for degradation to ensure normal DNA methylome and transcription in growing oocytes. Moreover, in aged ovarian follicles, deceased DCAF13 and DDB1 protein were observed, indicating a potential novel mechanism that regulates ovary aging.


Assuntos
Proteína 2 de Ligação a Metil-CpG , Ubiquitina-Proteína Ligases , Feminino , Humanos , Proteínas Culina/genética , Proteínas Culina/metabolismo , DNA/metabolismo , Metilação de DNA , Proteína 2 de Ligação a Metil-CpG/genética , Proteína 2 de Ligação a Metil-CpG/metabolismo , Oócitos/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
3.
Cell Mol Life Sci ; 81(1): 187, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38635081

RESUMO

Idiopathic pulmonary fibrosis (IPF) poses significant challenges due to limited treatment options despite its complex pathogenesis involving cellular and molecular mechanisms. This study investigated the role of transient receptor potential ankyrin 1 (TRPA1) channels in regulating M2 macrophage polarization in IPF progression, potentially offering novel therapeutic targets. Using a bleomycin-induced pulmonary fibrosis model in C57BL/6J mice, we assessed the therapeutic potential of the TRPA1 inhibitor HC-030031. TRPA1 upregulation was observed in fibrotic lungs, correlating with worsened lung function and reduced survival. TRPA1 inhibition mitigated fibrosis severity, evidenced by decreased collagen deposition and restored lung tissue stiffness. Furthermore, TRPA1 blockade reversed aberrant M2 macrophage polarization induced by bleomycin, associated with reduced Smad2 phosphorylation in the TGF-ß1-Smad2 pathway. In vitro studies with THP-1 cells treated with bleomycin and HC-030031 corroborated these findings, highlighting TRPA1's involvement in fibrotic modulation and macrophage polarization control. Overall, targeting TRPA1 channels presents promising therapeutic potential in managing pulmonary fibrosis by reducing pro-fibrotic marker expression, inhibiting M2 macrophage polarization, and diminishing collagen deposition. This study sheds light on a novel avenue for therapeutic intervention in IPF, addressing a critical need in the management of this challenging disease.


Assuntos
Fibrose Pulmonar Idiopática , Macrófagos , Canal de Cátion TRPA1 , Animais , Camundongos , Acetanilidas , Bleomicina , Colágeno , Proteínas do Citoesqueleto , Camundongos Endogâmicos C57BL , Purinas , Canal de Cátion TRPA1/metabolismo
4.
Angew Chem Int Ed Engl ; : e202320151, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38665013

RESUMO

Developing solid-state hydrogen storage materials requires a comprehensive understanding of the dehydrogenation chemistry of a solid-state hydride. Transition state search and kinetics calculations are essential to understanding and designing high-performance solid-state hydrogen storage materials by filling in the knowledge gap that current experiments cannot measure. However, the ab initio analysis of these processes is expensive and time-consuming. Searching for descriptors to accurately predict the energy barrier is urgently needed, to accelerate the prediction of hydrogen storage material properties and identify the opportunities and challenges. Herein, we develop a data-driven model to describe and predict the dehydrogenation barriers of a typical solid-state hydrogen storage material, MgH2, based on the combination of the crystal Hamilton population orbital of Mg-H bond and the distance between atomic hydrogen. All the parameters in this model can be directly calculated with significantly less computational cost than conventional transition state search, so that the dehydrogenation performance of hydrogen storage materials can be predicted efficiently. Finally, we found that this model leads to excellent agreement with typical experimental measurements reported to date and provides clear design guidelines on how to propel the performance of MgH2 closer to the target set by the United States Department of Energy (US-DOE).

5.
Stem Cell Res Ther ; 15(1): 115, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38650029

RESUMO

BACKGROUND: Studies have shown that chemotherapy and radiotherapy can cause premature ovarian failure and loss of fertility in female cancer patients. Ovarian cortex cryopreservation is a good choice to preserve female fertility before cancer treatment. Following the remission of the disease, the thawed ovarian tissue can be transplanted back and restore fertility of the patient. However, there is a risk to reintroduce cancer cells in the body and leads to the recurrence of cancer. Given the low success rate of current in vitro culture techniques for obtaining mature oocytes from primordial follicles, an artificial ovary with primordial follicles may be a good way to solve this problem. METHODS: In the study, we established an artificial ovary model based on the participation of mesenchymal stem cells (MSCs) to evaluate the effect of MSCs on follicular development and oocyte maturation. P2.5 mouse ovaries were digested into single cell suspensions and mixed with bone marrow derived mesenchymal stem cells (BM-MSCs) at a 1:1 ratio. The reconstituted ovarian model was then generated by using phytohemagglutinin. The phenotype and mechanism studies were explored by follicle counting, immunohistochemistry, immunofluorescence, in vitro maturation (IVM), in vitro fertilization (IVF), real-time quantitative polymerase chain reaction (RT-PCR), and Terminal-deoxynucleotidyl transferase mediated nick end labeling(TUNEL) assay. RESULTS: Our study found that the addition of BM-MSCs to the reconstituted ovary can enhance the survival of oocytes and promote the growth and development of follicles. After transplanting the reconstituted ovaries under kidney capsules of the recipient mice, we observed normal folliculogenesis and oocyte maturation. Interestingly, we found that BM-MSCs did not contribute to the formation of follicles in ovarian aggregation, nor did they undergo proliferation during follicle growth. Instead, the cells were found to be located around growing follicles in the reconstituted ovary. When theca cells were labeled with CYP17a1, we found some overlapped staining with green fluorescent protein(GFP)-labeled BM-MSCs. The results suggest that BM-MSCs may participate in directing the differentiation of theca layer in the reconstituted ovary. CONCLUSIONS: The presence of BM-MSCs in the artificial ovary was found to promote the survival of ovarian cells, as well as facilitate follicle formation and development. Since the cells didn't proliferate in the reconstituted ovary, this discovery suggests a potential new and safe method for the application of MSCs in clinical fertility preservation by enhancing the success rate of cryo-thawed ovarian tissues after transplantation.


Assuntos
Células-Tronco Mesenquimais , Oócitos , Ovário , Feminino , Animais , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Camundongos , Ovário/citologia , Oócitos/citologia , Oócitos/metabolismo , Transplante de Células-Tronco Mesenquimais/métodos , Folículo Ovariano/metabolismo , Folículo Ovariano/citologia
6.
Int Orthop ; 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38451310

RESUMO

PURPOSE: We aimed to evaluate the safety and effectiveness of three-dimensional (3D)-printed guide plates for assisting in the positioning of the rotation axis of an elbow-hinged external fixator. METHODS: Terrible triad (TT) patients, who were screened using the predefined inclusion and exclusion criteria, underwent installation of a hinged external fixator on the basis of internal fixation; 3D-printed guide plates, generated from the patient's imaging data, assisted in positioning the rotation axis. All patients received the same peri-operative management and were followed up at six, 12, 24, and 48 weeks postoperatively. The duration of positioning pin placement, the number of fluoroscopies, pin placement success rate, types and incidence of post-operative complications, and the Mayo elbow performance score (MEPS) of the diseased elbow and range of motion (ROM) of both elbows were assessed. RESULTS: In 25 patients who completed the follow-up, the average time required for positioning pin placement was 329.32 ± 42.38 s (263-443 s), the average number of fluoroscopies was 2.32 ± 0.48 times (2-3 times), and the pin placement success rate was 100%. At the last follow-up, the mean MEPS of the diseased elbow was 97.50 ± 6.92 (75-100), with an excellent and good rate of 100%, and all patients demonstrated stable concentric reduction. The average range of flexion and extension was 135.08° ± 17.10° (77-146°), while the average range of rotation was 169.21° ± 18.14° (108-180°). No significant difference was observed in the average ROM between the both elbows (P > 0.05). Eight (32%) patients developed post-operative complications, including elbow stiffness due to heterotopic ossification in three (12%) patients, all of whom did not require secondary intervention. CONCLUSION: Utilizing 3D-printed guide plates for positioning the rotation axis of an elbow-hinged external fixator significantly reduced intra-operative positioning pin placement time and the number of fluoroscopies with excellent positioning results. Satisfactory results were also obtained in terms of post-operative complications, elbow ROM, and functional scores.

7.
ACS Nano ; 18(11): 8107-8124, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38442075

RESUMO

Acute myocardial infarction (MI) and ischemic heart disease are the leading causes of heart failure and mortality. Currently, research on MI treatment is focused on angiogenic and anti-inflammatory therapies. Although endothelial cells (ECs) are critical for triggering inflammation and angiogenesis, no approach has targeted them for the treatment of MI. In this study, we proposed a nonviral combined nucleic acid delivery system consisting of an EC-specific polycation (CRPPR-grafted ethanolamine-modified poly(glycidyl methacrylate), CPC) that can efficiently codeliver siR-ICAM1 and pCXCL12 for the treatment of MI. Animals treated with the combination therapy exhibited better cardiac function than those treated with each nucleic acid alone. In particular, the combination therapy of CPC/siR-ICAM1 and CPC/pCXCL12 significantly improved cardiac systolic function, anti-inflammatory responses, and angiogenesis compared to the control group. In conclusion, CPC-based combined gene delivery systems show impressive performance in the treatment of MI and provide a programmed strategy for the development of codelivery systems for various EC-related diseases.


Assuntos
Insuficiência Cardíaca , Infarto do Miocárdio , Animais , Células Endoteliais , Infarto do Miocárdio/tratamento farmacológico , Endotélio , Anti-Inflamatórios/uso terapêutico
8.
Nanomicro Lett ; 16(1): 109, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38315253

RESUMO

Developing high-performance aqueous Zn-ion batteries from sustainable biomass becomes increasingly vital for large-scale energy storage in the foreseeable future. Therefore, γ-MnO2 uniformly loaded on N-doped carbon derived from grapefruit peel is successfully fabricated in this work, and particularly the composite cathode with carbon carrier quality percentage of 20 wt% delivers the specific capacity of 391.2 mAh g-1 at 0.1 A g-1, outstanding cyclic stability of 92.17% after 3000 cycles at 5 A g-1, and remarkable energy density of 553.12 Wh kg-1 together with superior coulombic efficiency of ~ 100%. Additionally, the cathodic biosafety is further explored specifically through in vitro cell toxicity experiments, which verifies its tremendous potential in the application of clinical medicine. Besides, Zinc ion energy storage mechanism of the cathode is mainly discussed from the aspects of Jahn-Teller effect and Mn domains distribution combined with theoretical analysis and experimental data. Thus, a novel perspective of the conversion from biomass waste to biocompatible Mn-based cathode is successfully developed.

9.
Nat Commun ; 15(1): 1591, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383540

RESUMO

CO2 fixation plays a key role to make biobased production cost competitive. Here, we use 3-hydroxypropionic acid (3-HP) to showcase how CO2 fixation enables approaching theoretical-yield production. Using genome-scale metabolic models to calculate the production envelope, we demonstrate that the provision of bicarbonate, formed from CO2, restricts previous attempts for high yield production of 3-HP. We thus develop multiple strategies for bicarbonate uptake, including the identification of Sul1 as a potential bicarbonate transporter, domain swapping of malonyl-CoA reductase, identification of Esbp6 as a potential 3-HP exporter, and deletion of Uga1 to prevent 3-HP degradation. The combined rational engineering increases 3-HP production from 0.14 g/L to 11.25 g/L in shake flask using 20 g/L glucose, approaching the maximum theoretical yield with concurrent biomass formation. The engineered yeast forms the basis for commercialization of bio-acrylic acid, while our CO2 fixation strategies pave the way for CO2 being used as the sole carbon source.


Assuntos
Carbono , Ácido Láctico/análogos & derivados , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Carbono/metabolismo , Dióxido de Carbono/metabolismo , Bicarbonatos/metabolismo , Engenharia Metabólica
10.
ACS Appl Mater Interfaces ; 16(8): 10218-10226, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38380613

RESUMO

Aqueous zinc-ion batteries (AZIBs) have gained significant attentions for their inherent safety and cost-effectiveness. However, challenges, such as dendrite growth and anodic corrosion at the Zn anode, hinder their commercial viability. In this paper, an organic-inorganic coating layer (Nafion-TiO2) was introduced to protect the Zn anode and electrolyte interface. Briefly, Nafion effectively shields against the corrosion from water molecules through the hydrophobic wall of -CF3 and guided zinc deposition from the -SO3 functional group, while TiO2 particles with a higher Young's modulus (151 GPa vs 120 GPa from Zn metal) suppress the zinc dendrite formation. As a result, with the protection of Nafion-TiO2, the symmetrical Zn∥Zn battery shows an improved cycle life of 1,750 h at 0.5 mA cm-2, and the full cell based on Zn∥MnO2 shows a long cycle life over 1,500 cycles at 1 A g-1. Our research offers a novel approach for protecting zinc metal anodes, potentially applicable to other metal anodes such as those in lithium and sodium batteries.

11.
Proc Natl Acad Sci U S A ; 121(4): e2309102121, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38232287

RESUMO

Nonradicals are effective in selectively degrading electron-rich organic contaminants, which unfortunately suffer from unsatisfactory yield and uncontrollable composition due to the competitive generation of radicals. Herein, we precisely construct a local microenvironment of the carbon nitride-supported high-loading (~9 wt.%) Fe single-atom catalyst (Fe SAC) with sulfur via a facile supermolecular self-assembly strategy. Short-distance S coordination boosts the peroxymonosulfate (PMS) activation and selectively generates high-valent iron-oxo species (FeIV=O) along with singlet oxygen (1O2), significantly increasing the 1O2 yield, PMS utilization, and p-chlorophenol reactivity by 6.0, 3.0, and 8.4 times, respectively. The composition of nonradicals is controllable by simply changing the S content. In contrast, long-distance S coordination generates both radicals and nonradicals, and could not promote reactivity. Experimental and theoretical analyses suggest that the short-distance S upshifts the d-band center of the Fe atom, i.e., being close to the Fermi level, which changes the binding mode between the Fe atom and O site of PMS to selectively generate 1O2 and FeIV=O with a high yield. The short-distance S-coordinated Fe SAC exhibits excellent application potential in various water matrices. These findings can guide the rational design of robust SACs toward a selective and controllable generation of nonradicals with high yield and PMS utilization.

12.
Curr Issues Mol Biol ; 45(12): 9723-9736, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38132453

RESUMO

Buffalo meat is gaining popularity for its nutritional properties, such as its low fat and cholesterol content. However, it is often unsatisfactory to consumers due to its dark color and low tenderness. There is currently limited research on the regulatory mechanisms of buffalo meat quality. Xinglong buffalo are raised in the tropical Hainan region and are undergoing genetic improvement from draught to meat production. For the first time, we evaluated the meat quality traits of Xinglong buffalo using the longissimus dorsi muscle and compared them to Hainan cattle. Furthermore, we utilized a multi-omics approach combining transcriptomics and metabolomics to explore the underlying molecular mechanism regulating meat quality traits. We found that the Xinglong buffalo had significantly higher meat color redness but lower amino acid content and higher shear force compared to Hainan cattle. Differentially expressed genes (DEGs) and differentially accumulated metabolites (DAMs) were identified, with them being significantly enriched in nicotinic acid and nicotinamide metabolic and glycine, serine, and threonine metabolic pathways. The correlation analysis revealed that those genes and metabolites (such as: GAMT, GCSH, PNP, L-aspartic acid, NADP+, and glutathione) are significantly associated with meat color, tenderness, and amino acid content, indicating their potential as candidate genes and biological indicators associated with meat quality. This study contributes to the breed genetic improvement and enhancement of buffalo meat quality.

13.
Cell Death Discov ; 9(1): 413, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37963880

RESUMO

Chemotherapy-induced ovarian damage and infertility are significant concerns for women of childbearing age with cancer; however, the underlying mechanisms are still not fully understood. Our study has revealed a close association between epigenetic regulation and cyclophosphamide (CTX)-induced ovarian damage. Specifically, CTX and its active metabolite 4-hydroperoxy cyclophosphamide (4-HC) were found to increase the apoptosis of granulosa cells (GCs) by reducing EZH2 and H3K27me3 levels, both in vivo and in vitro. Furthermore, RNA-seq and CUT&Tag analyses revealed that the loss of H3K27me3 peaks on promoters led to the overactivation of genes associated with transcriptional regulation and apoptosis, indicating that stable H3K27me3 status could help to provide a safeguard against CTX-induced ovarian damage. Administration of the H3K27me3-demethylase inhibitor, GSK-J4, prior to CTX treatment could partially mitigate GC apoptosis by reversing the reduction of H3K27me3 and the aberrant upregulation of specific genes involved in transcriptional regulation and apoptosis. GSK-J4 could thus potentially be a protective agent for female fertility when undergoing chemotherapy. The results provide new insights into the mechanisms for chemotherapy injury and future clinical interventions for fertility preservation.

14.
J Adv Res ; 2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38008175

RESUMO

BACKGROUND: Mitochondria-derived peptides (MDPs) represent a recently discovered family of peptides encoded by short open reading frames (ORFs) found within mitochondrial genes. This group includes notable members including humanin (HN), mitochondrial ORF of the 12S rDNA type-c (MOTS-c), and small humanin-like peptides 1-6 (SHLP1-6). MDPs assume pivotal roles in the regulation of diverse cellular processes, encompassing apoptosis, inflammation, and oxidative stress, which are all essential for sustaining cellular viability and normal physiological functions. Their emerging significance extends beyond this, prompting a deeper exploration into their multifaceted roles and potential applications. AIM OF REVIEW: This review aims to comprehensively explore the biogenesis, various types, and diverse functions of MDPs. It seeks to elucidate the central roles and underlying mechanisms by which MDPs participate in the onset and development of cardiovascular diseases (CVDs), bridging the connections between cell apoptosis, inflammation, and oxidative stress. Furthermore, the review highlights recent advancements in clinical research related to the utilization of MDPs in CVD diagnosis and treatment. KEY SCIENTIFIC CONCEPTS OF REVIEW: MDPs levels are diminished with aging and in the presence of CVDs, rendering them potential new indicators for the diagnosis of CVDs. Also, MDPs may represent a novel and promising strategy for CVD therapy. In this review, we delve into the biogenesis, various types, and diverse functions of MDPs. We aim to shed light on the pivotal roles and the underlying mechanisms through which MDPs contribute to the onset and advancement of CVDs connecting cell apoptosis, inflammation, and oxidative stress. We also provide insights into the current advancements in clinical research related to the utilization of MDPs in the treatment of CVDs. This review may provide valuable information with MDPs for CVD diagnosis and treatment.

15.
Orthop Surg ; 15(12): 3279-3287, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37853985

RESUMO

OBJECTIVE: The Ward triangle is an important area used clinically to diagnose and assess osteoporosis and its fracture risk in the proximal femur. The main objective of this study was to investigate the rules of development and maturation of the trabeculae of Ward's triangle to provide a basis for the prevention and treatment proximal femur fracture. METHODS: From January 2018 to December 2019, individuals from 4 months to 19 years old who underwent hip growth and development assessments at the Third Hospital of Hebei Medical University were selected retrospectively. The outpatient electronic medical record system was used to collect information such as age, gender, imaging images, and clinical diagnosis. The development score and maturity characteristics of the trabecular bone were analyzed using hip radiograph data. Correlation analysis was performed to identify the relationship among age, neck-shaft angle and development and maturity score of the trabecular bone. RESULTS: A total of 941 patients were enrolled in this study, including 539 males and 402 females. Primary compression trabeculae were all present at 1 year of age and matured at 7 years of age and older; primary tension trabeculae were all present at 4 years of age and matured at 18 years of age. Secondary compression trabeculae were present at 4 years of age and matured at 18 years of age. In addition, the neck-shaft angle progressively decreases from 4 months to 14 years of age but barely changes between 15 and 19 years of age. CONCLUSION: In short, the development and maturation of the trabeculae in the ward' triangle followed a specific temporal pattern that was related to the neck-shaft angle. Therefore, these findings can help us understand structure and mechanical characteristics of proximal femoral trabeculae, and improve our understanding of the mechanism and treatment of proximal femoral fractures.


Assuntos
Osteoporose , Fraturas Proximais do Fêmur , Masculino , Feminino , Humanos , Adolescente , Adulto Jovem , Adulto , Densidade Óssea , Osso Esponjoso , Estudos Retrospectivos , Fêmur/diagnóstico por imagem
16.
J Fluoresc ; 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37861967

RESUMO

Owing to the ultralong afterglow, room temperature decay phosphorescence nanomaterials have aroused enough attention. In the work, by simple one-pot solid-state thermal decomposition reaction, aggregate carbon dots (CDs) was prepared from trimesic and boric acid. Based on the intermolecular hydrogen bonds and intramolecular π-π stacking weak interaction from precursors, CDs was encapsulated in boron oxide matrix and formed aggregation. The aggregate state of CDs facilitated the triplet excited states (Tn), which could induce the room temperature decay phosphorescence properties. By careful investigation, under different excitation wavelengths at 254 and 365 nm, the aggregate CDs showed > 15 s and > 3 s room temperature phosphorescence emission in the naked eye, which was associated with 1516.12 ms and 718.62 ms lifetime respectively. And the aggregate CDs exhibited widespread application in encoding encryption, optical anti-counterfeiting and fingerprint identification etc. The interesting aggregate CDs revealed unexpected ultralong-afterglow room temperature decay phosphorescence properties and the work opened a window for constructing ultralong-afterglow room temperature decay phosphorescence aggregate CDs nanomaterials.

17.
Angew Chem Int Ed Engl ; 62(48): e202311625, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-37656120

RESUMO

The selectivity control of Pd nanoparticles (NPs) in the direct CO esterification with methyl nitrite toward dimethyl oxalate (DMO) or dimethyl carbonate (DMC) remains a grand challenge. Herein, Pd NPs are incorporated into isoreticular metal-organic frameworks (MOFs), namely UiO-66-X (X=-H, -NO2 , -NH2 ), affording Pd@UiO-66-X, which unexpectedly exhibit high selectivity (up to 99 %) to DMC and regulated activity in the direct CO esterification. In sharp contrast, the Pd NPs supported on the MOF, yielding Pd/UiO-66, displays high selectivity (89 %) to DMO as always reported with Pd NPs. Both experimental and DFT calculation results prove that the Pd location relative to UiO-66 gives rise to discriminated microenvironment of different amounts of interface between Zr-oxo clusters and Pd NPs in Pd@UiO-66 and Pd/UiO-66, resulting in their distinctly different selectivity. This is an unprecedented finding on the production of DMC by Pd NPs, which was previously achieved by Pd(II) only, in the direct CO esterification.

18.
Chem Commun (Camb) ; 59(72): 10761-10764, 2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37589047

RESUMO

The often-overlooked electrocatalytic bridge-site poisoning of the emerging dual-atom catalysts (DACs) has aroused broad concerns very recently. Herein, based on surface Pourbaix analysis, we identified a significant change in the electrochemistry-induced surface coverages of DACs upon changing the intermetal distance. We found a pronounced effect of the intermetal distance on the electrochemical potential window and the type of pre-covered adsorbate, suggesting an interesting avenue to tune the electrocatalytic function of DACs.

19.
Adv Mater ; 35(39): e2302512, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37421606

RESUMO

While the microenvironment around catalytic sites is recognized to be crucial in thermocatalysis, its roles in photocatalysis remain subtle. In this work, a series of sandwich-structured metal-organic framework (MOF) composites, UiO-66-NH2 @Pt@UiO-66-X (X means functional groups), is rationally constructed for visible-light photocatalytic H2 production. By varying the ─X groups of the UiO-66-X shell, the microenvironment of the Pt sites and photosensitive UiO-66-NH2 core can be simultaneously modulated. Significantly, the MOF composites with identical light absorption and Pt loading present distinctly different photocatalytic H2 production rates, following the ─X group sequence of ─H > â”€Br > â”€NA (naphthalene) > â”€OCH3  > â”€Cl > â”€NO2 . UiO-66-NH2 @Pt@UiO-66-H demonstrates H2 production rate up to 2708.2 µmol g-1  h-1 , ≈222 times that of UiO-66-NH2 @Pt@UiO-66-NO2 . Mechanism investigations suggest that the variation of the ─X group can balance the charge separation of the UiO-66-NH2 core and the proton reduction ability of Pt, leading to an optimal activity of UiO-66-NH2 @Pt@UiO-66-H at the equilibrium point.

20.
Talanta ; 261: 124661, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37201339

RESUMO

A novel and highly sensitive upconversion fluorescence and colorimetric dual readout iodate (IO3-) nanosensor system was constructed by using both the outstanding optical performance of NaYF4:Yb, Tm upconversion nanoparticles (UCNPs) and the analyte-triggered cascade signal amplification (CSA) technique. The construction of the sensing system consisted of three processes. First, IO3- oxidized o-phenylenediamine (OPD) to diaminophenazine (OPDox), while IO3- was reduced to I2. Second, the generated I2 can further oxidize OPD to OPDox. This mechanism has been verified by 1H NMR spectra titration analysis and HRMS measurement, which effectively improves the selectivity and sensitivity of the measurement of IO3-. Third, the generated OPDox can effectively quench the fluorescence of UCNPs via the inner filter effect (IFE), realize analyte-triggered CSA, and allow quantitative determination of IO3-. Under the optimized conditions, the fluorescence quenching efficiency showed a good linear relationship to IO3- concentration in the range of 0.06-100 µM, and the detection limit reached 0.026 µM (3RSD/slope). Moreover, this method was applied to detect IO3- in table salt samples, yielding satisfactory determination results with excellent recoveries (95.5-105%) and high precision (RSD <5.5%). These results suggest that the dual-readout sensing strategy with well-defined response mechanisms has promising application prospects in physiological and pathological studies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA